252 research outputs found

    Improved Prostate-Specific Membrane Antigen (PSMA) Stimulation Using a Super Additive Effect of Dutasteride and Lovastatin In Vitro

    Full text link
    Prostate-specific membrane antigen (PSMA)-based imaging improved the detection of primary, recurrent and metastatic prostate cancer. However, in certain patients, a low PSMA surface expression can be a limitation for this promising diagnostic tool. Pharmacological induction of PSMA might be useful to further improve the detection rate of PSMA-based imaging. To achieve this, we tested dutasteride (Duta)-generally used for treatment of benign prostatic enlargement-and lovastatin (Lova)-a compound used to reduce blood lipid concentrations. We aimed to compare the individual effects of Duta and Lova on cell proliferation as well as PSMA expression. In addition, we tested if a combination treatment using lower concentrations of Duta and Lova can further induce PSMA expression. Our results show that a treatment with ≤1 μM Duta and ≥1 μM Lova lead to a significant upregulation of whole and cell surface PSMA expression in LNCaP, C4-2 and VCaP cells. Lower concentrations of Duta and Lova in combination (0.5 μM Duta + 0.5 μM Lova or 0.5 μM Duta + 1 μM Lova) were further capable of enhancing PSMA protein expression compared to a single compound treatment using higher concentrations in all tested cell lines (LNCaP, C4-2 and VCaP)

    68Ga-PSMA-11 PET/MR Can Be False Positive in Normal Prostatic Tissue

    Full text link
    Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein expressed in the cytosol of normal prostate tissue and highly overexpressed on the membrane of prostate cancer, therefore increasingly used to image prostate cancer. We report a case of a 65-year-old man with two focal PSMA-positive areas on a Ga-PSMA-11 PET/MR, one corresponding to a prostate carcinoma (Gleason score 4 + 3) and another region without any evidence of malignancy, but with corresponding high PSMA-expression on immunohistochemistry

    Can PSMA PET/CT help in dose-tailoring in post-prostatectomy radiotherapy?

    Get PDF
    There are few randomized trials to evaluate the use of PSMA-PET in the planning of post-prostatectomy radiotherapy. There are two unresolved questions 1) should we increase the dose to lesions visible on PSMA-PET 2) can we reduce dose in the case of a negative PSMA-PET. In this review, we summarize and discuss the available evidence in the literature. We found that in general, there seems to be an advantage for dose-increase, but ta large recent study from the pre-PSMA era didn’t show an advantage for dose escalation. Retrospective studies have shown that conventional doses to PSMA-PET-positive lesions seem sufficient. On the other hand, in the case of a negative PSMA-PET, there is no evidence that dose-reduction is possible. In the future, the combination of PSMA-PET with genomic classifiers could help in better identify patients who might benefit from either dose- de-or -increase. We further need to identify intraindividual references to help identify lesions with higher aggressiveness

    Metal artifact reduction in 68^{68}Ga-PSMA-11 PET/MRI for prostate cancer patients with hip joint replacement using multiacquisition variable-resonance image combination

    Full text link
    BACKGROUND PET/MRI has a high potential in oncology imaging, especially for tumor indications where high soft tissue contrast is crucial such as genitourinary tumors. One of the challenges for PET/MRI acquisition is handling of metal implants. In addition to conventional methods, more innovative techniques have been developed to reduce artifacts caused by those implants such as the selective multiacquisition variable-image combination (MAVRIC-SL). The aim of this study is to perform a quantitative and qualitative assessment of metal artifact reduction in 68^{68}Ga-PSMA-11 PET/MRI for prostate cancer patients with hip joint replacement using a selective MAVRIC-SL sequence for the whole pelvis. METHODS We retrospectively analyzed data of 20 men with 37 metal hip implants diagnosed with PCA, staged or restaged by 68^{68}Ga-PSMA-11 PET/MRI from June 2016 to December 2017. Each signal cancellation per side or metal implant was analyzed on the reference sequence LAVA-FLEX, as well as T1-weighted fast spin echo (T1w-FSE) sequence and MAVRIC-SL. Two independent reviewers reported on a four-point scale whether abnormal pelvic 68^{68}Ga-PSMA-11 uptake could be assigned to an anatomical structure in the tested sequences. RESULTS The smallest averaged signal void was observed on MAVRIC-SL sequences with a mean artifact size of 26.17 cm2^{2} (range 12.63 to 42.93 cm2^{2}, p < 0.001). The best image quality regarding anatomical assignment of pathological PSMA uptakes in the pelvis by two independent readers was noted for MAVRIC-SL sequences, followed by T1w-FSE with excellent interreader agreement. CONCLUSIONS MAVRIC-SL sequence allows better image quality in the surrounding of hip implants by reducing MR signal voids and increasing so the accuracy of anatomical assignment of pathological 68^{68}Ga-PSMA-11 uptake in the pelvis over LAVA-FLEX and T1w-FSE sequences

    Development and external validation of a multivariable [68^{68}Ga]Ga-PSMA-11 PET-based prediction model for lymph node involvement in men with intermediate or high-risk prostate cancer

    Full text link
    PURPOSE To develop and evaluate a lymph node invasion (LNI) prediction model for men staged with [68^{68}Ga]Ga-PSMA-11 PET. METHODS A consecutive sample of intermediate to high-risk prostate cancer (PCa) patients undergoing [68^{68}Ga]Ga-PSMA-11 PET, extended pelvic lymph node dissection (ePLND), and radical prostatectomy (RP) at two tertiary referral centers were retrospectively identified. The training cohort comprised 173 patients (treated between 2013 and 2017), the validation cohort 90 patients (treated between 2016 and 2019). Three models for LNI prediction were developed and evaluated using cross-validation. Optimal risk-threshold was determined during model development. The best performing model was evaluated and compared to available conventional and multiparametric magnetic resonance imaging (mpMRI)-based prediction models using area under the receiver operating characteristic curves (AUC), calibration plots, and decision curve analysis (DCA). RESULTS A combined model including prostate-specific antigen, biopsy Gleason grade group, [68^{68}Ga]Ga Ga-PSMA-11 positive volume of the primary tumor, and the assessment of the [68^{68}Ga]Ga-PSMA-11 report N-status yielded an AUC of 0.923 (95% CI 0.863-0.984) in the external validation. Using a cutoff of  ≥ 17%, 44 (50%) ePLNDs would be spared and LNI missed in one patient (4.8%). Compared to conventional and MRI-based models, the proposed model showed similar calibration, higher AUC (0.923 (95% CI 0.863-0.984) vs. 0.700 (95% CI 0.548-0.852)-0.824 (95% CI 0.710-0.938)) and higher net benefit at DCA. CONCLUSIONS Our results indicate that information from [68^{68}Ga]Ga-PSMA-11 may improve LNI prediction in intermediate to high-risk PCa patients undergoing primary staging especially when combined with clinical parameters. For better LNI prediction, future research should investigate the combination of information from both PSMA PET and mpMRI for LNI prediction in PCa patients before RP

    Impact of different image reconstructions on PET quantification in non-small cell lung cancer: a comparison of adenocarcinoma and squamous cell carcinoma

    Full text link
    OBJECTIVE: Positron emission tomography (PET) using 18F-fluordeoxyglucose (F-FDG) is an established imaging modality for tumor staging in patients with non-small cell lung cancer (NSCLC). There is a growing interest in using F-FDG PET for therapy response assessment in NSCLC which relies on quantitative PET parameters such as standardized uptake values (SUV). Different reconstruction algorithms in PET may affect SUV. We sought to determine the variation of SUV in patients with NSCLC when using ordered subset expectation maximization (OSEM) and block sequential regularized expectation maximization (BSREM) in latest-generation digital PET/CT, including a subanalysis for adenocarcinoma and squamous cell carcinoma. METHODS: A total of 58 patients (34 = adenocarcinoma, 24 = squamous cell carcinoma) that underwent a clinically indicated F-FDG PET/CT for staging were reviewed. PET images were reconstructed with OSEM and BSREM reconstruction with noise penalty strength β-levels of 350, 450, 600, 800 and 1200. Lung tumors maximum standardized uptake value (SUV) were compared. RESULTS: Lung tumors SUV were significantly lower in adenocarcinomas compared to squamous cell carcinomas in all reconstructions evaluated (all p 0.05). There was a statistically significant difference of the relative increase of SUV in adenocarcinoma (mean + 34.8%) and squamous cell carcinoma (mean 23.4%), when using BSREM instead of OSEM (p < 0.05). CONCLUSIONS: In NSCLC the relative change of SUV when using BSREM instead of OSEM is significantly higher in adenocarcinoma as compared to squamous cell carcinoma. ADVANCES IN KNOWLEDGE: The impact of BSREM on SUV may vary in different histological subtypes of NSCLC. This highlights the importance for careful standardisation of β-value used for serial F-FDG PET scans when following-up NSCLC patients

    What's behind 68 Ga-PSMA-11 uptake in primary prostate cancer PET? Investigation of histopathological parameters and immunohistochemical PSMA expression patterns

    Full text link
    Purpose: Prostate-specific membrane antigen (PSMA-) PET has become a promising tool in staging and restaging of prostate carcinoma (PCa). However, specific primary tumour features might impact accuracy of PSMA-PET for PCa detection. We investigated histopathological parameters and immunohistochemical PSMA expression patterns on radical prostatectomy (RPE) specimens and correlated them to the corresponding 68Ga-PSMA-11-PET examinations. Methods: RPE specimens of 62 patients with preoperative 68Ga-PSMA-11-PET between 2016 and 2018 were analysed. WHO/ISUP grade groups, growth pattern (expansive vs. infiltrative), tumour area and diameter as well as immunohistochemical PSMA heterogeneity, intensity and negative tumour area (PSMA%neg) were correlated with spatially corresponding SUVmax on 68Ga-PSMA-11-PET in a multidisciplinary analysis. Results: All tumours showed medium to strong membranous (2-3 +) and weak to strong cytoplasmic (1-3 +) PSMA expression. Heterogeneously expressed PSMA was found in 38 cases (61%). Twenty-five cases (40%) showed at least 5% and up to 80% PSMA%neg. PSMA%neg, infiltrative growth pattern, smaller tumour area and diameter and WHO/ISUP grade group 2 significantly correlated with lower SUVmax values. A ROC curve analysis revealed 20% PSMA%neg as an optimal cutoff with the highest sensitivity and specificity (89% and 86%, AUC 0.923) for a negative PSMA-PET scan. A multiple logistic regression model revealed tumoural PSMA%neg (p < 0.01, OR = 9.629) and growth pattern (p = 0.0497, OR = 306.537) as significant predictors for a negative PSMA-PET scan. Conclusions: We describe PSMA%neg, infiltrative growth pattern, smaller tumour size and WHO/ISUP grade group 2 as parameters associated with a lower 68Ga-PSMA-11 uptake in prostate cancer. These findings can serve as fundament for future biopsy-based biomarker development to enable an individualized, tumour-adapted imaging approach. Keywords: Glutamate carboxypeptidase II; Immunohistochemistry; Neoplasm staging; Positron emission tomography; Prostatic neoplasm

    Quantitative imaging parameters to predict the local staging of prostate cancer in intermediate- to high-risk patients

    Full text link
    Objectives: PSMA PET/MRI showed the potential to increase the sensitivity for extraprostatic disease (EPD) assessment over mpMRI; however, the interreader variability for EPD is still high. Therefore, we aimed to assess whether quantitative PSMA and mpMRI imaging parameters could yield a more robust EPD prediction. Methods: We retrospectively evaluated PCa patients who underwent staging mpMRI and [68Ga]PSMA-PET, followed by radical prostatectomy at our institution between 01.02.2016 and 31.07.2019. Fifty-eight cases with PET/MRI and 15 cases with PET/CT were identified. EPD was determined on histopathology and correlated with quantitative PSMA and mpMRI parameters assessed by two readers: ADC (mm2/1000 s), longest capsular contact (LCC, mm), tumor volume (cm3), PSMA-SUVmax and volume-based parameters using a fixed threshold at SUV > 4 to delineate PSMAtotal (g/ml) and PSMAvol (cm3). The t test was used to compare means, Pearson's test for categorical correlation, and ROC curve to determine the best cutoff. Interclass correlation (ICC) was performed for interreader agreement (95% CI). Results: Seventy-three patients were included (64.5 ± 6.0 years; PSA 14.4 ± 17.1 ng/ml), and 31 had EPD (42.5%). From mpMRI, only LCC reached significance (p = 0.005), while both volume-based PET parameters PSMAtotal and PSMAvol were significantly associated with EPD (p = 0.008 and p = 0.004, respectively). On ROC analysis, LCC, PSMAtotal, and PSMAvol reached an AUC of 0.712 (p = 0.002), 0.709 (p = 0.002), and 0.718 (p = 0.002), respectively. ICC was moderate-good for LCC 0.727 (0.565-0.828) and excellent for PSMAtotal and PSMAvol with 0.944 (0.990-0.996) and 0.985 (0.976-0.991), respectively. Conclusions: Quantitative PSMA parameters have a similar potential as mpMRI LCC to predict EPD of PCa, with a significantly higher interreader agreement. Keywords: Extracapsular extension; PSMA PET (MRI) Prostate cancer; Prediction; Seminal vesicle infiltration

    Infiltrative growth pattern of prostate cancer is associated with lower uptake on PSMA PET and reduced diffusion restriction on mpMRI

    Full text link
    Purpose: Recently, a significant association was shown between novel growth patterns on histopathology of prostate cancer (PCa) and prostate-specific membrane antigen (PSMA) uptake on [68Ga]PSMA-PET. It is the aim of this study to evaluate the association between these growth patterns and ADC (mm2/1000 s) values in comparison to [68Ga]PSMA uptake on PET/MRI. Methods: We retrospectively evaluated patients who underwent [68Ga]PSMA PET/MRI for staging or biopsy guidance, followed by radical prostatectomy at our institution between 07/2016 and 01/2020. The dominant lesion per patient was selected based on histopathology and correlated to PET/MRI in a multidisciplinary meeting, and quantified using SUVmax for PSMA uptake and ADCmean for diffusion restriction. PCa growth pattern was classified as expansive (EXP) or infiltrative (INF) according to its properties of forming a tumoral mass or infiltrating diffusely between benign glands by two independent pathologists. Furthermore, the corresponding WHO2016 ISUP tumor grade was evaluated. The t test was used to compare means, Pearson's test for categorical correlation, Cohen's kappa test for interrater agreement, and ROC curve to determine the best cutoff. Results: Sixty-two patients were included (mean PSA 11.7 ± 12.5). The interrater agreement between both pathologists was almost perfect with κ = 0.81. While 25 lesions had an EXP-growth with an ADCmean of 0.777 ± 0.109, 37 showed an INF-growth with a significantly higher ADCmean of 1.079 ± 0.262 (p < 0.001). We also observed a significant difference regarding PSMA SUVmax for the EXP-growth (19.2 ± 10.9) versus the INF-growth (9.4 ± 6.2, p < 0.001). Within the lesions encompassing the EXP- or the INF-growth, no significant correlation between the ISUP groups and ADCmean could be observed (p = 0.982 and p = 0.861, respectively). Conclusion: PCa with INF-growth showed significantly lower SUVmax and higher ADCmean values compared to PCa with EXP-growth. Within the growth groups, ADCmean values were independent from ISUP grading. Keywords: Diffusion-weighted imaging; MRI; PSMA PET/MRI; Prostate cancer; Radical prostatectom
    • …
    corecore